A Robust RBF-ANN Model to Predict the Hot Deformation Flow Curves of API X65 Pipeline Steel
نویسنده
چکیده
In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model were compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain power m (m is a constant). Root mean square error (RMSE) criterion was used to assess the prediction performance of the investigated models. According to the results obtained, it was shown that the RBF-ANN model has a better performance than that of the investigated phenomenological model. Very low RMSE value of 0.41 MPa was obtained for RBF-ANN model, which was less than one-tenth of the RMSE value of 4.74 MPa obtained for the investigated constitutive equation. The results can be further used in mathematical simulation of hot metal forming processes.
منابع مشابه
A Robust RBF-ANN Model to Predict the Hot Deformation Flow Curves of API X65 Pipeline Steel
Abstract In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial functio...
متن کاملMODELING THE HOT DEFORMATION FLOW CURVES OF API X65 PIPELINE STEEL USING THE POWER LAW EQUATION
Till now, different constitutive models have been applied to model the hot deformation flow curves of different materials. In this research, the hot deformation flow stress of API X65 pipeline steel was modeled using the power law equation with strain dependent constants. The results was compared with the results of the other previously examined constitutive equations including the Arrhenius eq...
متن کاملGenetic Algorithm-based Optimization Procedures to Find the Constants of Johnson-Cook Constitutive Equation
Johnson-Cook constitutive equation is one of the most famous constitutive equations that have ever been developed to model the hot deformation flow curves of different materials. This equation is a predefined model in the traditional finite element codes to describe the material behavior in applications such as simulating the manufacturing processes. In this work, two different genetic algorith...
متن کاملNeural Network Prediction of Warm Deformation Flow Curves in Ferrite+ Cementite Region
Many efforts have been made to model the the hot deformation (dynamic recrystallization) flow curves of different materials. Phenomenological constitutive models, physical-based constitutive models and artificial neural network (ANN) models are the main methods used for this purpose. However, there is no report on the modeling of warm deformation (dynamic spheroidization) flow curves of any kin...
متن کاملA SVM model to predict the hot deformation flow curves of AZ91 magnesium alloy
Abstract In this work, a support vector machine (SVM) model was developed to predict the hot deformation flow curves of AZ91 magnesium alloy. The experimental stress-strain curves, obtained from hot compression testing at different deformation conditions, were sampled. Consequently, a data base with the input variables of the deformation temperature, strain rate and strain and the output variab...
متن کامل